Reaction of Thiocyanogen with Chloro-tris(triphenylphosphine)-Copper(I) and Crystal Structure of μ -Dithiocyanato-tetrakis(triphenylphosphine)dicopper-(I)

NAYLA K. HOMSY, MATHIAS NOLTEMEYER, HERBERT W. ROESKY, HANS-GEORG SCHMIDT and GEORGE M. SHELDRICK*

Institut für Anorganische Chemie der Universität, Tammannstrasse 4, D-3400 Göttingen, F.R.G.

Received July 23, 1984

Many attempts have been made to synthesize metal complexes containing the thiocyanogen entity as a neutral ligand. Fernandez and co-workers reacted SnCl₄ [1], MoCl₅ [2] and CrO₂Cl₂ [3] with (SCN)₂ and obtained Sn₂Cl₇(SCN)₃, MoCl₅(SCN)₂ and [CrO₂Cl₂(SCN)₃]₂, respectively. They suggested the following structures: Cl₄Sn-NCS-SCN-SnCl₃NCS with (SCN)₂ as a bridging ligand (based on IR and Raman spectroscopy), Cl₅MoNCS-SCN with (SCN)₂ boned to MoCl₅ through one nitrogen atom (based on IR and ESR spectroscopy), and (SCN)₂Cl₂O₂-Cr-NCS-SCN-CrO₂Cl₂(SCN)₂ (based on IR and Raman spectroscopy). However, no X-ray structures have been reported.

CuCl(PPh₃)₃ seemed to be a good substrate for the formation of an (SCN)₂ complex. Instead of complexation, reduction of (SCN)₂ with Cl/SCN exchange was observed. The white crystalline product is shown by X-ray structure determination to be [CuSCN(PPh₃)₂]₂ with bridging SCN groups. The structure is compared with that of [CuSCN(PMe-Ph₂)₂]₂ [4].

Experimental

A 0.65 g (5.6 mmol) sample of freshly prepared (SCN)₂ in 80 ml CH₂Cl₂ was added dropwise to a solution of 5.0 g (5.6 mmol) of CuCl(PPh₃)₃ in 80 ml CH₂Cl₂ at -50 °C. The reaction mixture was allowed to come slowly to room temperature. After stirring for 3 h the white precipitate was separated from the yellow-orange solution by filtration, dried in vacuum, and recrystallized from CH₂Cl₂.

M.p. = 235 °C. Anal. Calc. for $C_{37}H_{30}CuNP_2S$: C, 68.8; H, 4.65; N, 2.17; P, 9.60. Found: C, 69.8; H, 4.33; N, 2.28; P, 9.54. Single crystals suitable for X-ray analysis were obtained by slow evaporation

TABLE 1. Atomic Coordinates ($\times 10^4$) and Isotropic Thermal Parameters ($\mathbb{A}^2 \times 10^3$).

	x	у	2
Cu	3445(1)	4453(1)	3054(1)
P(1)	3209(1)	6152(1)	2985(1)
P(2)	2196(1)	2688(1)	1791(1)
S	5803(1)	4517(2)	3082(1)
Ν	3318(4)	4737(4)	4660(4)
С	6329(5)	4954(5)	4416(5)
C(11)	1715(5)	6604(4)	3500(4)
C(12)	1608(7)	7727(5)	4032(6)
C(13)	405(7)	8000(7)	4328(6)
C(14)	-696(7)	7145(7)	4117(6)
C(15)	-628(7)	6025(7)	3601(6)
C(16)	570(6)	5745(5)	3289(5)
C(21)	4582(5)	7388(5)	3845(4)
C(22)	5167(6)	7397(5)	4800(5)
C(23)	6227(7)	8281(5)	5466(5)
C(24)	6720(6)	9157(5)	5207(5)
C(25)	6148(7)	9181(5)	4264(5)
C(26)	5083(6)	8292(5)	3582(5)
C(41)	2675(6)	1390(5)	1753(4)
C(42)	3971(6)	1291(5)	1635(5)
C(43)	4355(7)	288(6)	1517(6)
C(44)	3458(7)	-590(6)	1560(5)
C(45)	2163(6)	-494(5)	1722(5)
C(46)	1770(6)	495(5)	1801(5)
C(51)	474(5)	2490(4)	2058(4)
C(52)	247(6)	2909(5)	3156(5)
C(53)	-1036(6)	2811(6)	3426(5)
C(54)	-2124(6)	2301(5)	2598(6)
C(55)	-1921(6)	1878(5)	1501(5)
C(56)	-648(5)	1965(5)	1229(5)
C(31)	3098(5)	6235(4)	1659(4)
C(32)	4206(6)	6167(5)	1098(5)
C(33)	4128(7)	6174(5)	68(5)
C(34)	2948(7)	6214(5)	-434(5)
C(35)	1849(6)	6274(5)	104(5)
C(36)	1910(6)	6288(5)	1143(5)
C(61)	2047(5)	2362(5)	312(4)
C(62)	2053(7)	1282(5)	-515(5)
C(63)	1930(8)	1089(6)	-1613(5)
C(64)	1800(7)	1939(6)	-1905(5)
C(65)	1773(7)	3016(6)	-1104(5)
C(66)	1892(6)	3220(5)	2(5)

of the solvent. IR: 2100vs, 1583w, 1480s, 1463sh, 1326w, 1306w, 1260w, 1182w, 1156w, 1091m, 1070sh, 1026w, 992w, 800w, 751sh, 740s, 745s, 720sh, 695sh, 690s, 680sh, 615 w cm⁻¹. Raman: 756m, 702m, 687m, 619s, 528m, 428m, 258s, 223s, 196s, 167s, 96sh, 84vs. ¹³C NMR: $\delta = 134.08$ ppm (d, ${}^{2}J_{CP} = 15.0$ Hz), 133.21 ppm (d, ${}^{3}J_{CP} = 27.8$ Hz), 130.16 ppm (s), 128.95 ppm (d, ${}^{3}J_{CP} = 9.2$ Hz), 132.31 ppm (SCN, d, ${}^{3}J_{CP} = 9.4$ Hz). ³¹P NMR: $\delta = -2.14$ ppm (s). The mass spectrum showed peaks due to PPh₃.

^{*}Author to whom correspondence should be addressed.

Fig. 1. The dimer unit of $[CuNCS(PPh_3)_2]_2$. Primed atoms have been generated via the crystallographic inversion centre. Principal dimensions: Cu-N 1.983(7), Cu-S 2.408(3), N-C 1.115(9), C-S 1.617(7), Cu-P (mean) 2.294(3), P-C (mean) 1.808(9) Å, N-Cu-S 98.5(2), P-Cu-P 122.5(1), Cu-S-C 102.6(3), S-C-N 179.4(8), C-N-Cu 157.1(5)°.

Crystal Data

 $C_{37}H_{30}CuNP_2S$, M = 646.2, triclinic space group $P\overline{1}$, a = 10.276(4), b = 13.077(5), c = 13.041(5)Å, $\alpha = 114.71(2)$, $\beta = 92.99(3)$, $\gamma = 100.77(3)^\circ$, U= 1547.2 Å³, Z = 2, $d_{calc} = 1.387$ g cm⁻³, $\mu(MoK_{\alpha}) = 0.90$ mm⁻¹.

Intensities for 4349 reflections were measured from a crystal of dimensions $0.3 \times 0.4 \times 0.5 \text{ mm}^3$, using a Stoe-Siemens 4-circle diffractometer and a profile-fitting procedure [5], and graphite monochromated MoK_{α} radiation ($\lambda = 0.71069$ Å), for $2\theta < 45^\circ$. After Lp but not absorption corrections the 3140 unique data with $F > 3\sigma(F)$ were used for all calculations. The structure was solved by direct methods and refined with riding isotropic Hatoms [C-H 0.96 Å on external C-C-C bisectors, $U(H) = 1.2 U_{eq}(C)$] and all other atoms anisotropic to R = 0.060 and $R_w = 0.051$. The weighting scheme was $w^{-1} = \sigma^2(F) + 0.0005 F^2$, and an isotropic extinction parameter x refined to 0.0012(2) where $F_c^* = F_c/[1 + 0.002xF_c^2/\sin(2\theta)]^{0.25}$. Atomic coordinates are presented in Table I, and selected bond lengths and angles in the legend to the Fig. 1.*

Results and Discussion

The structure consists of dimeric units [CuNCS- $(PPh_3)_2]_2$ with a crystallographic inversion centre in the middle of each dimer (Fig. 1). The structure is very similar to that of $[CuNCS(PPh_2Me)_2]_2$ [4]. However, the Cu-P distances are about 0.04 Å longer, possibly because of the greater steric requirements of the phenyl group compared to methyl, and the ligand S and N are both about 0.04 Å closer to Cu. The coordination of Cu(I) is distorted tetrahedral, the small N-Cu-S angle compensating for a large P-Cu-P angle. The thiocyanate group is linear at carbon, but coordinates non-linearly through N and S.

Acknowledgement

We are grateful to the Fonds der Chemischen Industrie for support.

References

- 1 V. Fernandez, D. Tudela and J. R. Masaguer, An. Quim., 75, 490 (1979).
- 2 V. Fernandez and I. Yerga, Z. Anorg. Allg. Chem., 477, 205 (1981).
- 3 V. Fernandez and J. Rujas, Inorg. Nucl. Chem. Lett., 15, 285 (1979).
- 4 A. P. Gaughan, R. F. Ziolo and Z. Dori, *Inorg. Chim. Acta*, 4, 640 (1979).
- 5 W. Clegg, Acta Crystallogr., Sect. A:, 37, 22 (1981).

^{*}Tables of geometrical parameters, anisotropic temperature factors, and observed and calculated structure factors are obtainable from author GMS on request.